The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation.

نویسندگان

  • Kathleen A Martin
  • Eva M Rzucidlo
  • Bethany L Merenick
  • Diane C Fingar
  • David J Brown
  • Robert J Wagner
  • Richard J Powell
چکیده

Vascular smooth muscle cells (VSMC) in mature, normal blood vessels exhibit a differentiated, quiescent, contractile morphology, but injury induces a phenotypic modulation toward a proliferative, dedifferentiated, migratory phenotype with upregulated extracellular matrix protein synthesis (synthetic phenotype), which contributes to intimal hyperplasia. The mTOR (the mammalian target of rapamycin) pathway inhibitor rapamycin inhibits intimal hyperplasia in animal models and in human clinical trials. We report that rapamycin treatment induces differentiation in cultured synthetic phenotype VSMC from multiple species. VSMC treated with rapamycin assumed a contractile morphology, quantitatively reflected by a 67% decrease in cell area. Total protein and collagen synthesis were also inhibited by rapamycin. Rapamycin induced expression of the VSMC differentiation marker contractile proteins smooth muscle (SM) alpha-actin, calponin, and SM myosin heavy chain (SM-MHC), as observed by immunoblotting and immunohistochemistry. Notably, we detected a striking rapamycin induction of calponin and SM-MHC mRNA, suggesting a role for mTOR in transcriptional control of VSMC gene expression. Rapamycin also induced expression of the cyclin-dependent kinase inhibitors p21(cip) and p27(kip), consistent with cell cycle withdrawal. Rapamycin inhibits mTOR, a signaling protein that regulates protein synthesis effectors, including p70 S6K1. Overexpression of p70 S6K1 inhibited rapamycin-induced contractile protein and p21(cip) expression, suggesting that this kinase opposes VSMC differentiation. In conclusion, we report that regulation of VSMC differentiation is a novel function of the rapamycin-sensitive mTOR signaling pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The acute effects of strength, endurance and concurrent exercises on the Akt/mTOR/p70S6K1 and AMPK signaling pathway responses in rat skeletal muscle

The activation of competing intracellular pathways has been proposed to explain the reduced training adaptations after concurrent strength and endurance exercises (CE). The present study investigated the acute effects of CE, strength exercises (SE), and endurance exercises (EE) on phosphorylated/total ratios of selected AMPK and Akt/mTOR/p70(S6K1) pathway proteins in rats. Six animals per exerc...

متن کامل

Rapamycin plays a new role as differentiator of vascular smooth muscle phenotype. focus on "The mTOR/p70 S6K1 pathway regulates vascular smooth muscle differentiation".

Aberrant vascular smooth muscle cell (VSMC) growth and migration are associated with many vascular occlusive diseases, including atherosclerosis, transplant vasculopathy, and restenosis after percutaneous transluminal angioplasty (PTCA). Upon injury of the arterial wall, VSMC dedifferentiate into a synthetic, proliferative phenotype. These initial growth events are then followed by the directio...

متن کامل

The Translation Regulatory Subunit eIF3f Controls the Kinase-Dependent mTOR Signaling Required for Muscle Differentiation and Hypertrophy in Mouse

The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target that accounts for MAFbx function during atrop...

متن کامل

Thrombin induces expression of FGF-2 via activation of PI3K-Akt-Fra-1 signaling axis leading to DNA synthesis and motility in vascular smooth muscle cells.

To understand the mechanisms by which thrombin induces vascular smooth muscle cell (VSMC) DNA synthesis and motility, we have studied the role of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR)-S6K1 signaling. Thrombin stimulated the phosphorylation of Akt and S6K1 in VSMC in a sustained manner. Blockade of PI3K-Akt-mTOR-S6K1 signaling by LY-294002, and rapamycin s...

متن کامل

Serotonin-induced growth of pulmonary artery smooth muscle requires activation of phosphatidylinositol 3-kinase/serine-threonine protein kinase B/mammalian target of rapamycin/p70 ribosomal S6 kinase 1.

We have previously found that both mitogen-activated protein kinase (MAPK)- and Rho kinase (ROCK)-related signaling pathways are necessary for the induction of pulmonary artery smooth muscle cell (SMC) proliferation by serotonin (5-hydroxytryptamine [5-HT]). In the present study, we investigated the possible additional participation of a phosphatidylinositol 3-kinase (PI3K)/serine-threonine pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 286 3  شماره 

صفحات  -

تاریخ انتشار 2004